8th International Junior Science Olympiad Durban, South Africa

Theoretical Examination: Part 1 - Biology Model Answers

5 December 2011

Complete the following:

NAME:	
SEAT NO.:	
COUNTRY:	
SIGNATURE:	

This answer sheet consists of 7 pages. Please ensure you have them all.

QUESTION 1

(a) Match the parts indicated by A, B and C (from Figure 1) in Column X with one corresponding structure or part indicated by numerals in Column Y. Write the numeral from Column Y in the space provided in Column X.

Column X		Column Y
	I.	Liquid which serves as shock absorber.
A. III	II.	Liquid which contains red blood cells to carry
B. I		oxygen.
C. VIII	III.	Structure which represents the stage of human
		development from 3-9 months during pregnancy.
	IV.	A structure which represents the stage of human
		development from 1-2 months during pregnancy.
	V.	Structure which dilates during first stage of
		birth/parturition.
	VI.	Site where fertilization takes place.
	VII.	Structure which is shed during menstruation.
	VIII.	Myometrium (Muscular wall).

(1.5 marks)

(b) State whether the following is true or false by placing a tick ($\sqrt{}$) in the appropriate box.

Amniocentesis cannot be carried out during the 36th week of pregnancy because...

	True	False
(i) the amniotic fluid will not contain cells.		
(0.25 mark)		
(ii) there is a greater possibility of injuring the foetus.		
(0.25 mark)		
	(0.	5 mark)

(c)

(i) Circle the letter which corresponds to symptom(s) of the genetic disorder which can be detected using the chromosomal map in Figure 2. (0.5 mark)

A. Lacks or has inadequate presence of clotting factor VIII.

B. Low muscle tone, intellectual disability and short stature

C. Sticky mucus blocks air passages in lungs.

- (ii) True False (0.25 marks)
- (iii) Circle the correct LETTER.
 - A. female because it has 23 pairs of chromosomes.
 - **B.** male because it has 23 pairs of chromosomes.
 - C. male because it has identical sex chromosomes.
 - **D.** female because it has identical sex chromosomes.

(0.5 mark)

(d) Answer the questions by placing a tick ($\sqrt{}$) in the most appropriate box.

		Μ	Ν	0	Р
(i)	The hormone which is released in large quantities by the				
	pituitary gland to facilitate the process of child				
	birth/parturition is				
(ii)	The hormone which is produced in large quantities by the				
	placenta and helps to maintain the endometrium is				
		(0.5 X 2	2 = 1m	ark)

QUESTION 2

Write the two correct letters which correspond to the statements.

______ (0.75 mark) _____ (0.75 mark)

QUESTION 3

Tick the appropriate box.

	True	False
A. A further increase in light intensity beyond point (c)		
in Figure 3a will significantly increase the rate of		
photosynthesis.		
(0.25 mark)		
B. In figure 3a, beyond point (c) light intensity is the		
limiting factor on the rate of photosynthesis.		
(0.25 mark)		

C. In both figures, the plant is only respiring and not photosynthesizing at point (a). (0.25 mark)		
D. The plant has reached maximum rate of O ₂ production at point (d) in Figure 3b and the rate of photosynthesis may remain at a constant level. (0.25 mark)		
	1	(1 mark)

QUESTION 4

(a)

Calculate the net energy yield for crop A	(0.25 mark)
Net energy yield: A (Wheat) = gross energy yield – energy input	
= 85 GJ/hect/yr – 30 GJ/hect/yr	
= 55 GJ/hect/yr	

Calculate the net energy yield for crop B	(0.25 mark)	
Net energy yield: B (Sugarbeet) = gross energy yield – energy input		
= 130 GJ/hect/yr – 65 GJ/hect/yr		
= 65 GJ/hect/yr		

Calculate the net energy yield for crop D	(0.25 mark)
Net energy yield: D (Leycrops) = gross energy yield – energy input	
= 75 GJ/hect/yr – 25 GJ/hect/yr	
= 50 GJ/hect/yr	

Net energy yield: E (Maize)= gross energy yield – energy input = 125 GJ/hect/yr – 35 GJ/hect/yr = 90 GJ/hect/yr

(b) Write the LETTER of the crop which produces the highest yield of biogas E______
 (0.25 mark)

(c)

LETTER of crop from non-gas biofuels which	ANSWER:B
yield highest net energy.	(0.5 mark)

(d)

(i)

If diesel is replaced with biodiesel, calculate the estimated percentage reduction in	CO ₂
emissions.	(1 mark)
78-30	
= <u>48 X 100</u>	
78	
= 60%	
Accept range 55%- 65%	

(ii) Place a tick in the appropriate box to choose the biofuel which is most favourable in reducing CO_2 emissions.

(0.5 mark)

Biodiesel	Biogas	Ethanol	Methanol

End of Biology Questions

8th International Junior Science Olympiad Durban, South Africa

Theoretical Examination: Part 1 – Chemistry Model Answers

QUESTION 1

1.1 (0.5 marks)

Give the balanced equation:

 $NaCl + H_2SO_4 \rightarrow HCl + NaHSO_4$ or $H_2SO_4 + 2NaCl \rightarrow 2HCl + Na_2SO_4$

1.2 (0.5 marks)

Insert the letter of the correct choice in Table 1.

Table 1:

NaCl is a solid at room temperature which melts at 804 °C.

1.3

(i) (0.25 mark)

Formula	Circle the correct choice
HF 1/16	strong / weak 1/16
HCl 1/16	strong / weak - 1/16

С

(ii) $(1.25 \text{ marks} = 5 \times 0.25)$

Statement Number	Circle the correct choice	
1.	True / False	
2.	True / False	
3.	True / False	
4.	True / False	
5.	True / False	

1.4 (0.75 mark)

Formula of A SiF₄ 0.25

Formula of B	H ₂ O 0.25
--------------	-----------------------

Give the balanced equation:

 $3SiF_4 + 2H_2O \rightarrow 2H_2SiF_6 + SiO_2 \ 0.125$ for coefficients of H_2O and HF

1.5 (0.5 mark = 0.1×5)

	Mixture	Circle the correct choice
Α	$HCl + H_2SO_4$	Yes / No
В	$HF + H_2O$	Yes / No
С	HF + NaF	Yes / No
D	HF + excess NaOH	Yes / No
E	HCl + excess NaOH	Yes / No

1.6 (1 mark)

Calculation of the number of H ⁺ ions present in one drop (0.05 cm ³) of water.
Show K_w expression or pH 7 (0.25 mark)
Conc of H^+ in water = 1.0×10^{-7} mol dm ⁻³ (0.25 mark)
moles of $H^+ = 1.0 \times 10^{-7} \text{ mol dm}^{-3} \times 0.050 \text{ mL} \times 10^{-3} = 5.00 \times 10^{-12} \text{ mol}$ (0.25 mark)
no. of H ⁺ ions = 5.00×10^{-12} mol × 6.022×10^{23} mol ⁻¹ = 3.0×10^{12} (0.25 mark)
(minus 0.125 for missing conversion, final answer, etc.)

QUESTION 2

2.1 (1 mark)

(i) Give the letter of the statement that correctly completes the sentence:

Statement	Α	(0.25 mark)
-----------	---	-------------

(ii) Give the letter of the statement that correctly completes the sentence:

Statement	С	(0.5 mark)
-----------	---	------------

(iii) Give the letter of the statement that correctly completes the sentence:

Statement	D	(0.25 mark)
-----------	---	-------------

Calculation of the pH of 0.25 mol dm ⁻³ H ₂ SO ₄ at 25 °C.			
$H_2SO_4 \rightarrow 2H^+ + SO_4^{-2-}$	(0.25)		
pH = -log(0.5) = 0.30	(0.25)	minus 0.125 for any mistake	

2.3 (0.5 mark)

Calculation of the volume to which 75.0 cm³ of a 10.0 mol dm⁻³ H₂SO₄ solution should be diluted to obtain a 1.75 mol dm⁻³ H₂SO₄ solution. No. of moles of H₂SO_{4 before dilution} = No. of moles of H₂SO_{4 after dilution}

(0.25 mark)

 $10.0 \text{ M H}_2\text{SO}_4 \times 75.0 \text{ mL} = 1.75 \text{ M H}_2\text{SO}_4 \times \text{vol of H}_2\text{SO}_4$ (0.25 mark)

vol of $H_2SO_4 = 429 \text{ mL}$

minus 0.125 for any mistake

2.4 (0.75 mark)

Calculation of the volume of 0.101 mol dm ⁻³ NaOH.	
$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$	(0.25 mark)
Moles of $H^+ = 0.138 \text{ M H}_2\text{SO}_4 \times 10.0 \text{ mL} \times 2 = 2.76 \times 10^{-3} \text{ mol}$	(0.25 mark)
Volume of NaOH = $(2.76 \times 10^{-3} \text{ mol}/0.101 \text{ mol dm}^{-3}) \times 10^{3} = 27.3 \text{ mL}$	(0.25 mark)
Answer required in cm ³	
Minus 0.125 for any mistake	

(1 mark)

	Equation for half-reactio	n
Anode or positive electrode	$2H_2O \rightarrow 4H^+ + O_2$	(0.5 mark) OH^{-} not accepted
	as reactant	
Cathode or negative electrode	$2\mathrm{H}^+ + 2\mathrm{e}^- \rightarrow \mathrm{H}_2$	(0.5 mark) water not accepted
	as reactant	

2.5 (1.75 marks)

(Minus 0.125 for errors)

Calculation of the density of SO₂. $d = \frac{pM}{RT} = \frac{[1.464 \times 10^{-4} \ atm](101325 \ Pa \ atm^{-1}](64.07 \ g \ mol^{-1})}{(8.314 \ J \ K^{-1} \ mol^{-1})(191.95 \ K)} = 0.596 \ g \ m^{-3}$ $n = pV/RT = (1.2 \ atm \ x \ 101325 \ Pa)(500 \ dm^3 \ x \ 10^3)/(8.314 \ J \ K^{-1} \ mol^{-1})(304.35 \ K) = 24.026$ mol (0.5 mark) $V_2 = nRT/p = [(24.026 \ mol)(8.314 \ J \ K^{-1} \ mol^{-1})(191.95 \ K)]/0.000122 \ x \ 101325 \ Pa \ x \ 1.2 \ atm)$ $= 2585 \ m^3 \ (0.5 \ mark)$ Molar mass = 32.06 + 32.00 = 64.06 g \ mol^{-1} \ (0.25 \ mark)
Mass = 24.026 mol x \ 64.06 g \ mol^{-1} = 1539 \ g \ (0.25 \ mark)
Density = m/V = 1539 g/2585 m^3 = 0.595 g m^{-3} \ (0.25 \ mark)

End of Chemistry Answers

8th International Junior Science Olympiad

Durban, South Africa

Theoretical Examination: Part 1 – Physics

Model Answers

—=0.5 point

Question 1 (a) (i)

(0.5 point)

real	virtual	magnified	diminished

(ii)	(0.5 point)		
There will be no	You will only see	You will only see	You will still see the
image	the bottom half of	the top half of the	full image of the
	the filament	filament	filament

(iii) (0.5 point)			
There will be no	You will see a larger	You will see an	You will see a faint
image of the	image of the	upright image of the	image of the
filament	filament	filament	filament

(b)

30 cm

50 cm

16 cm

s=-14 cm □ for diverging lens. s'=50-16 cm=34 cm □ Using the thin lens equation, we have 1s+1s'=1f \rightarrow 1-14 cm+134=1f \rightarrow 1f=-0.0420 cm-1 f=-24 cm □

(2 points)

Question 2

```
(1.5 points)
(a)N-mg = mv2R
(b) \Rightarrow N=mv2R+mg \Box = mv2R+g= 50 kg (2\pi35 m50 s)2 35
   m+9.8ms=518 N
(c) (b)
                                                                         (d) (2 point)
(e) FL2=mv22(L1+L2) \Box = m2\pi(L1+L2)T2(L1+L2)=4\pi2m(L1+L2)T2 \Box
(f) FL1-FL2=mv12L1
(g) \Rightarrow FL1=m2\piL1T2L1+4\pi2m(L1+L2)T2 \Box =4\pi2L1T2+4\pi2m(L1+L2)T2=4
   \pi 2m(2L1+L2)T2
(h)
(i)
(j)
(k)
(1)
(m)
(n)
(0)
(p)
(q)
(r)
(s) Question 3
(t) (a)
                                                                         (u) (1 point)
(v) 12mv2=9.6×10-13 | □
(w)v=3.4×107 ms□
(x)
(y)
                                                                         (z) (2 point)
         Consider part of the beam as a cylinder with cross section area A.
(aa)
(bb)
         N=number of protons per unit volume
         In time \Delta t, each proton moves a distance v\Delta t
(cc)
(dd)
         V=Volume of beam=Av\Delta t
         Charge \Delta Q flowing out of the cylinder in time \Delta t is
(ee)
(ff) \Delta Q = qp NAv \Delta t \Box
         Current is I=\Delta Q\Delta t=qpNAv
(gg)
         N=IqpAv
(hh)
(ii) =800×10-6 A 1.6×10-19 C×π1.5×10-3 m2×3.4×107 ms□
(jj) =1.6×1013 protons/m3□
(kk)
(11)
(mm)
(nn)
```